KVO 100-125

- Возможность регулирования скорости
- Встроенные термоконтакты
- Низкий уровень шума
- Компактная конструкция

Вентиляторы серии KVO 100-125 представляют собой радиальные вентиляторы одностороннего всасывания с рабочими лопатками загнутыми вперед. Привод - двигатель с внешним ротором, не требующий какого-либо обслуживания в процессе эксплуатации. Во всех вентиляторах серии KVO электродвигатель и рабочие лопатки установлены на откидывающейся крышке, что значительно облечает обслуживание.

Для защиты электродвигателя от перегрева вентиляторы серии KVO 100-125 снабжены встроенными термоконтактами с электрическим перезапуском. Вентиляторы могут устанавливаться в любом положении и легко подсоединяются к спирально-навивным воздуховодам при помощи быстроразъемного хомута FK.

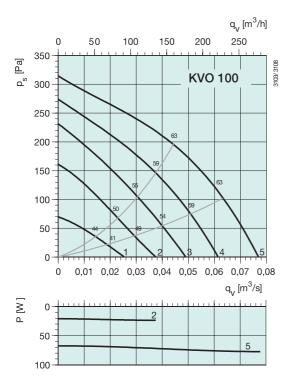
Откидывающаяся крышка имеет 40 мм слой изоляции из минеральной ваты. Корпус изготовлен из оцинкованной листовой стали.

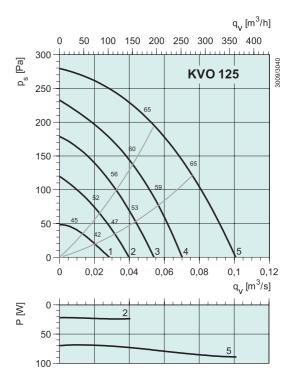
		KVO 100	KVO 125
Напряжение/Частота	В/50 Гц	230	230
Фазность	~	1	1
Потребляемая мощность	Вт	78	89
Ток	Α	0,35	0,39
Макс. расход воздуха	м³/с (м³/час)	0,078 (280)	0,101 (365)
Частота вращения	мин ⁻¹	2445	2180
Макс. температура перемещаемого воздуха	°C	60	65
Макс. темп. перемещаемого воздуха при ре	егулировании °C	60	65
Уровень звукового давления на расстоянии	3 м дБ(А)	39	52
Bec	КГ	5,9	5,7
Класс изоляции двигателя		В	В
Класс защиты двигателя		IP 44	IP 44
Емкость конденсатора	мкФ	2	2
Тип термозащиты		Встроенная	Встроенная
Регулятор скорости, пятиступенчатый	Трансформатор	RE 1,5	RE 1,5
Регулятор 5-ст., высокая/низкая скорость	Трансформатор	REU 1,5	REU 1,5
Регулятор скорости, бесшаговый	Тиристор	MTY 1AU	MTY 1AU
Регулятор скорости, электронный		ETFV, RET, REP, REPT 6	ETFV, RET, REP, REPT 6
Схема подключения, стр. 12-15		2	2

FK стр. 503 SG с

SG ctp. 505 VK ctp. 505

505


IGK ctp. 506 RSK ctp. 504

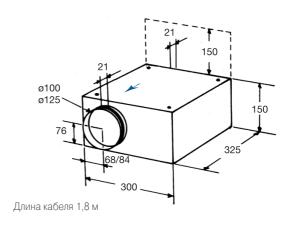

LDC ctp. 494

FFR ctp. 494

СВ стр. 496

KVO 100

	Окта								
Октавные полосы частот, Гц									
Гц	Общ	. 63	125	250	500	1k	2k	4k	8k
дБ(А)	63	48	59	58	55	48	46	43	38
дБ(А)	67	53	60	59	61	59	56	50	45
дБ(А)	46	18	35	39	37	41	37	28	22
дБ(А)	53	48	51	44	29	14	5	0	13
дБ(А)	56	53	52	45	35	25	15	5	20
	дБ(A) дБ(A) дБ(A) дБ(A)	дБ(A) 63 дБ(A) 67 дБ(A) 46 дБ(A) 53	дБ(A) 63 48 дБ(A) 67 53 дБ(A) 46 18 дБ(A) 53 48	дБ(A) 63 48 59 дБ(A) 67 53 60 дБ(A) 46 18 35 дБ(A) 53 48 51	дБ(A) 63 48 59 58 дБ(A) 67 53 60 59 дБ(A) 46 18 35 39 дБ(A) 53 48 51 44	дБ(A) 63 48 59 58 55 дБ(A) 67 53 60 59 61 дБ(A) 46 18 35 39 37 дБ(A) 53 48 51 44 29	дБ(A) 63 48 59 58 55 48 дБ(A) 67 53 60 59 61 59 дБ(A) 46 18 35 39 37 41 дБ(A) 53 48 51 44 29 14	дБ(A) 63 48 59 58 55 48 46 дБ(A) 67 53 60 59 61 59 56 дБ(A) 46 18 35 39 37 41 37 дБ(A) 53 48 51 44 29 14 5	дБ(A) 67 53 60 59 61 59 56 50 дБ(A) 46 18 35 39 37 41 37 28 дБ(A) 53 48 51 44 29 14 5 0


Условия испытаний: $q_v = 0.045 \text{ м}^3/\text{c}, \ P_s = 200 \ \Pi\text{a}$

KVO 125

	Октавные полосы частот, Гц									
	Гц (Общ	. 63	125	250	500	1k	2k	4k	8k
LwA к входу	дБ(А)	65	43	61	57	58	54	51	49	43
LwA к выходу	дБ(А)	65	44	56	58	60	58	57	49	38
LwA к окружению	дБ(А)	45	19	32	38	38	38	38	33	26
c LDC 125-600										
LwA к входу	дБ(А)	52	43	52	39	28	14	3	6	19
LwA к выходу	дБ(А)	50	44	47	40	30	18	9	6	14

Условия испытаний: $q_v = 0.048 \text{ м}^3/\text{c}$, $P_s = 214 \text{ }\Pi\text{a}$

KVO 100/125

Электрические принадлежности

Трансформатор стр. 478

Тиристор стр. 480

Регулятор стр. 490

KVO 160

- Возможность регулирования скорости
- Встроенные термоконтакты
- Низкий уровень шума
- Компактная конструкция

Вентиляторы серии KVO 160 представляют собой радиальные вентиляторы одностороннего всасывания с рабочими лопатками загнутыми вперед. Привод - двигатель с внешним ротором, не требующий какого-либо обслуживания в процессе эксплуатации. Во всех вентиляторах серии KVO электродвигатель и рабочие лопатки установлены на откидывающейся крышке, что значительно облечает обслуживание.

Для защиты электродвигателя от перегрева вентиляторы серии KVO 160 снабжены встроенными термоконтактами с электрическим перезапуском. Вентиляторы могут устанавливаться в любом положении и легко подсоединяются к спирально-навивным воздуховодам при помощи быстроразъемного хомута FK. Откидывающаяся крышка имеет 40 мм слой изоляции из минеральной ваты. Корпус изготовлен из оцинкованной листовой стали.

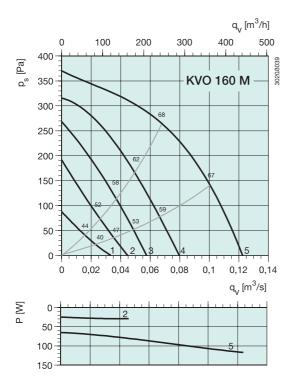
Также выпускаются модели с присоединительным диаметром 150 мм.

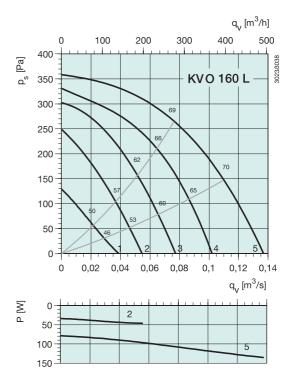
		KVO 160M	KVO 160L
Напряжение/Частота	В/50 Гц	230	230
Фазность	~	1	1
Потребляемая мощность	Вт	117	135
Ток	Α	0,51	0,59
Макс. расход воздуха	м³/с (м³/час)	0,12 (446)	0,14 (498)
Частота вращения	мин ⁻¹	2070	2545
Макс. температура перемещаемого воздуха	°C	70	70
Макс. темп. перемещаемого воздуха при р	егулировании °C	70	70
Уровень звукового давления на расстоянии	3 м дБ(А)	42	43
Bec	KF	6,7	7,2
Класс изоляции двигателя		В	В
Класс защиты двигателя		IP 44	IP 44
Емкость конденсатора	мкФ	2	4
Тип термозащиты		Встроенная	Встроенная
Регулятор скорости, пятиступенчатый	Трансформатор	RE 1,5	RE 1,5
Регулятор 5-ст., высокая/низкая скорость	Трансформатор	REU 1,5	REU 1,5
Регулятор скорости, бесшаговый	Тиристор	MTY 1AU	MTY 1AU
Регулятор скорости, электронный		ETFV, RET, REP, REPT 6	ETFV, RET, REP, REPT 6
Схема подключения, стр. 12-15		2	2

FK ctp. 503 SG ctp. 505

VK стр. 505

IGK стр. 506

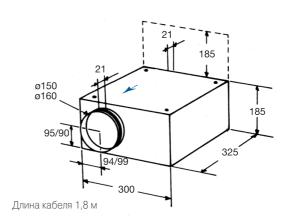

RSK ctp. 504


LDC ctp. 494

FFR стр. 494

СВ стр. 496

KVO 160M


	Октавные полосы частот, Гц										
	Гц	Общ	. 63	125	250	500	1k	2k	4k	8k	
L_{wA} к входу	дБ(А)	68	53	63	64	61	58	55	53	49	
L_{wA} к выходу	дБ(А)	72	54	61	66	65	65	65	58	54	
L_{wA} к окружению	дБ(А)	49	40	37	42	39	43	39	33	30	
c LDC 160-900											
L_{wA} к входу	дБ(А)	57	53	55	48	34	22	8	16	28	
L_{wA} к выходу	дБ(А)	57	54	53	50	38	29	18	21	33	

Условия испытаний: $q_v = 0.067 \text{ м}^3/\text{c}, \ P_s = 276 \ \Pi\text{a}$

KVO 160L

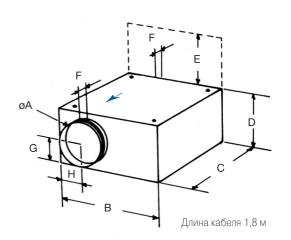
I COOL										
	Октавные полосы частот, Гц									
	Гц	Общ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} к входу	дБ(А)	69	53	62	64	63	57	56	56	53
L_{wA} к выходу	дБ(А)	75	54	64	70	69	66	68	63	59
L_{wA} к окружению	дБ(А)	50	31	37	44	43	40	41	40	38
c LDC 160-900										
L_{wA} к входу	дБ(А)	57	53	54	48	36	21	9	19	32
L_{wA} к выходу	дБ(А)	60	54	56	54	42	30	21	26	38

Условия испытаний: $q_v = 0,076 \text{ м}^3/\text{c}, \ P_s = 271 \ \Pi \text{a}$

Электрические принадлежности

Трансформатор стр. 478

Тиристор стр. 480


Регулятор

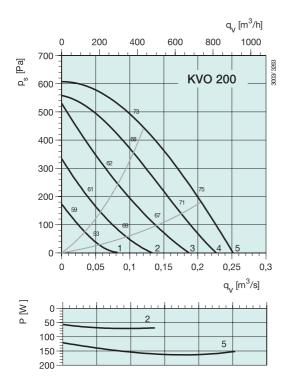
стр. 490

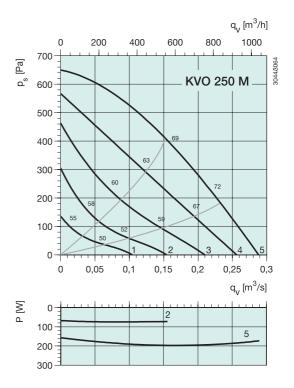
KVO 200-250

KVO	ØA	В	С	D	Е	F	G	Н
200	200	435	415	220	220	25	109	123
250 M/I	250	559	515	270	270	27	122	151

		KVO 200	KVO 250M	KVO 250L
Напряжение/Частота	В/50 Гц	230	230	230
Фазность	~	1	1	1
Потребляемая мощность	Вт	165	198	303
Ток	А	0,77	0,89	1,33
Макс. расход воздуха	м³/с (м³/час)	0,25 (913)	0,29 (1043)	0,42 (1502)
Частота вращения	МИН ⁻¹	2680	2630	2470
Макс. темп. перемещаемого воздуха	°C	50	60	50
Макс. темп. воздуха при регулировании	°C	45	60	50
Уровень звук. давления на расст. 3 м	дБ(А)	49	46	52
Bec	КГ	11,4	11,2	17,7
Класс изоляции двигателя		F	F	F
Класс защиты двигателя		IP 44	IP 44	IP 44
Емкость конденсатора	мкФ	4	5	7
Тип термозащиты		Интегральный	Интегральный	Интегральный
Регулятор, пятиступенчатый	Трансформатор	RE 1,5	RE 1,5	RE 3
Регулятор 5-ст., высок./низк. скорость	Трансформатор	REU 1,5	REU 1,5	REU 3
Регулятор скорости, бесшаговый	Тиристор	MTY 1AU	MTY 1AU	MTY 2AU
Регулятор скорости, электронный		ETFV, RET, REP, REPT 6	ETFV, RET, REP, REPT 6	ETFV, RET, REP, REPT 6
Схема подключения, стр. 12-15		2	2	2

FK стр. 503 SG стр. 505


VK стр. 505

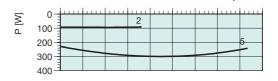

IGK стр. 506 RSK стр. 504

LDC стр. 494 FFR стр. 494

СВ стр. 496

KVO 200

	Октавные полосы частот, Гц										
	Гц	Общ	. 63	125	250	500	1k	2k	4k	8k	
L _{wA} к входу	дБ(А)	73	42	63	65	71	61	60	56	49	
L_{wA} к выходу	дБ(А)	77	56	62	67	75	67	66	59	52	
L_{wA} к окружению	дБ(А)	56	23	42	45	53	48	44	38	31	
c LDC 200-900											
L_{wA} к входу	дБ(А)	58	42	56	52	47	30	16	25	29	
L_{wA} к выходу	дБ(А)	60	56	55	54	51	36	22	28	32	


Условия испытаний: $q_v = 0,11 \text{ м}^3/\text{c}, \ P_s = 473 \ \Pi\text{a}$

KVO 250M

TO LOCIVI											
	Октавные полосы частот, Гц										
	Гц	Общ	. 63	125	250	500	1k	2k	4k	8k	
L _{wA} к входу	дБ(А)	69	60	61	61	62	60	60	59	53	
L_{wA} к выходу	дБ(А)	73	57	58	60	70	66	65	59	51	
L_{wA} к окружению	дБ(А)	53	45	40	43	49	45	45	41	35	
c LDC 250-900											
L_{wA} к входу	дБ(А)	61	60	55	50	41	33	21	34	34	
L_{wA} к выходу	дБ(А)	59	57	52	49	49	39	26	34	32	

Условия испытаний: $q_v = 0,16 \text{ м}^3/\text{c}, \ P_s = 392 \ \Pia$

$\boldsymbol{q}_{V} \, [m^3/h]$ 600 800 1000 1200 1400 1600 0 200 400 900 [Pa] 800 **KVO 250 L** ď 700 600 500 400 300 200 100 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 $q_V^{}$ [m 3 /s]

KVO 250L

Октавные полосы частот, Гц									
Гц	Общ	. 63	125	250	500	1k	2k	4k	8k
дБ(А)	73	57	61	65	69	65	64	61	56
дБ(А)	78	57	61	67	75	70	71	64	59
дБ(А)	59	39	41	46	57	50	48	42	36
дБ(А)	60	57	55	54	48	38	25	36	37
дБ(А)	62	57	55	56	54	43	32	39	40
	Гц дБ(А) дБ(А) дБ(А) дБ(А)	Гц Общ дБ(А) 73 дБ(А) 78 дБ(А) 59 дБ(А) 60	Гц Общ. 63 дБ(А) 73 57 дБ(А) 78 57 дБ(А) 59 39 дБ(А) 60 57	Гц Общ. 63 125 дБ(A) 73 57 61 дБ(A) 78 57 61 дБ(A) 59 39 41	Гц Общ. 63 125 250 дБ(А) 73 57 61 65 дБ(А) 78 57 61 67 дБ(А) 59 39 41 46 дБ(А) 60 57 55 54	Гц Общ. 63 125 250 500 дБ(А) 73 61 65 69 дБ(А) 78 57 61 67 75 дБ(А) 59 39 41 46 57 дБ(А) 60 57 55 54 48	Гц Общ. 63 125 250 500 1k дБ(A) 73 57 61 65 69 65 дБ(A) 78 57 61 67 75 70 дБ(A) 59 39 41 46 57 50 дБ(A) 60 57 55 54 48 38	Гц Общ. 63 125 250 500 1k 2k дБ(A) 73 57 61 65 69 65 64 дБ(A) 78 57 61 67 75 70 71 дБ(A) 59 39 41 46 57 50 48 дБ(A) 60 57 55 54 48 38 25	Октавные полосы частот, ги Гц Общ. 63 125 250 500 1k 2k 4k дБ(A) 73 57 61 65 69 65 64 61 дБ(A) 78 57 61 67 75 70 71 64 дБ(A) 59 39 41 46 57 50 48 42 дБ(A) 60 57 55 54 48 38 25 36 дБ(A) 62 57 55 56 54 43 32 39

Условия испытаний: $q_v = 0.25 \text{ м}^3/\text{c}, \ P_s = 390 \ \Pi\text{a}$

Электрические принадлежности

Трансформатор стр. 478

Тиристор стр. 480

Регулятор стр. 490

KVO 315

- Возможность регулирования скорости
- Встроенные термоконтакты
- Низкий уровень шума
- Компактная конструкция

Вентиляторы серии KVO 315 представляют собой радиальные вентиляторы одностороннего всасывания с рабочими лопатками загнутыми вперед. Привод - двигатель с внешним ротором, не требующий какого-либо обслуживания в процессе эксплуатации. Во всех вентиляторах серии KVO электродвигатель и рабочие лопатки установлены на откидывающейся крышке, что значительно облечает обслуживание.

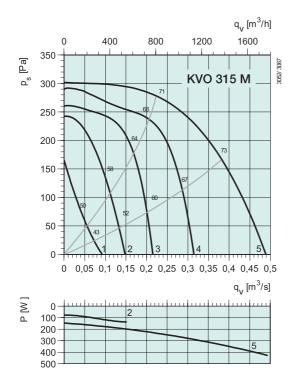
Для защиты электродвигателя от перегрева вентиляторы серии KVO 315 снабжены встроенными термоконтактами с выводами для подсоединения устройства защиты двигателя. Вентиляторы могут устанавливаться в любом положении и легко подсоединяются к спирально-навивным воздуховодам при помощи быстроразъемного хомута FK.

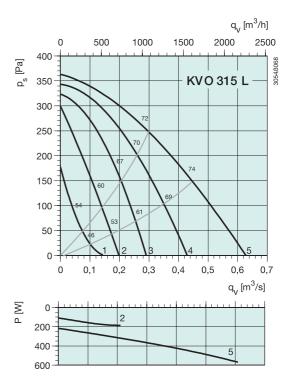
Откидывающаяся крышка имеет 40 мм слой изоляции из минеральной ваты. Корпус изготовлен из оцинкованной листовой стали.

		KVO 315M	KVO 315L
Напряжение/Частота	В/50 Гц	230	230
Фазность	~	1	1
Потребляемая мощность	Вт	436	583
Ток	А	2,08	2,73
Макс. расход воздуха	м³/с (м³/час)	0,49 (1780)	0,61 (2194)
Частота вращения	МИН ⁻¹	1265	1275
Макс. температура перемещаемого воздуха	°C	70	70
Макс. темп. перемещаемого воздуха при ре	гулировании °C	70	70
Уровень звукового давления на расстоянии	3 м дБ(А)	46	50
Bec	КГ	21,2	24,3
Класс изоляции двигателя		F	F
Класс защиты двигателя		IP 44	IP 44
Емкость конденсатора	мкФ	6	10
Тип термозащиты		STET 10B	STET 10B
Регулятор скорости, пятиступенчатый	Трансформатор	RTRE 3	RTRE 3
Регулятор 5-ст., высокая/низкая скорость	Трансформатор	REU 3 + STET 10B	REU 3 + STET 10B
Регулятор скорости, бесшаговый	Тиристор	MTY 4AU +STET 10B	MTY 4AU + STET 10B
Регулятор скорости, электронный		ETFV, RET, REP, REPT 6	ETFV, RET, REP, REPT 6
Схема подключения, стр. 12-15		12	12

FK ctp. 503 SG ctp. 505

VK стр. 505


5 RSK стр. 504


LDC ctp. 494

FFR стр. 494

СВ стр. 496

KVO 315M

	Октавные полосы частот, Гц										
	Гц Общ. 63			125	250	500	1k	2k	4k	8k	
L_{wA} к входу	дБ(А)	71	50	66	62	61	62	63	60	56	
L_{wA} к выходу	дБ(А)	76	60	67	66	67	71	68	66	63	
L_{wA} к окружению	дБ(А)	53	32	43	48	44	48	46	40	38	
c LDC 315-900											
L_{wA} к входу	дБ(А)	62	50	61	53	43	39	31	40	38	
L _{wA} к выходу	дБ(А)	65	60	62	57	49	48	36	46	45	

Условия испытаний: $q_v = 0.24 \text{ м}^3/\text{c}$, $P_s = 281 \text{ }\Pi\text{a}$

550 ø315 340 580 Длина кабеля 1,8 м

KVO 315L

	Октавные полосы частот, Гц									
	Гц	Общ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} к входу	дБ(А)	72	57	68	65	64	63	63	60	53
L_{wA} к выходу	дБ(А)	77	62	69	70	69	71	69	67	59
L_{wA} к окружению	дБ(А)	57	36	48	53	49	49	46	42	36
c LDC 315-900										
L_{wA} к входу	дБ(А)	65	57	63	56	46	40	31	40	35
L _{wA} к выходу	дБ(А)	67	62	64	61	51	48	37	47	41

Условия испытаний: $q_v = 0.36 \text{ м}^3/\text{c}, \ P_s = 269 \ \Pia$

Электрические принадлежности

Реле термозащиты

Трансформатор стр. 478

Тиристор стр. 480

Регулятор стр. 490

KVO 355-400

- Возможность регулирования скорости
- Встроенные термоконтакты
- Низкий уровень шума
- Компактная конструкция

Вентиляторы серии KVO 355-400 представляют собой радиальные вентиляторы одностороннего всасывания с рабочими лопатками загнутыми вперед. Привод - двигатель с внешним ротором, не требующий какого-либо обслуживания в процессе эксплуатации. Во всех вентиляторах серии KVO электродвигатель и рабочие лопатки установлены на откидывающейся крышке, что значительно облечает обслуживание.

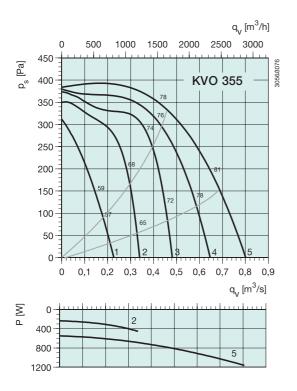
Для защиты электродвигателя от перегрева вентиляторы серии KVO 355-400 снабжены встроенными термоконтактами с выводами для подсоединения устройства защиты двигателя. Вентиляторы могут устанавливаться в любом положении и легко подсоединяются к спирально-навивным воздуховодам при помощи быстроразъемного хомута FK. Корпус изготовлен из оцинкованной листовой стали. Откидывающаяся крышка имеет 40 мм слой изоляции из минеральной ваты.

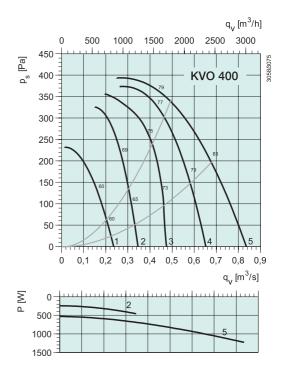
		KVO 355	KVO 400
Напряжение/Частота	В/50 Гц	230	230
Фазность	~	1	1
Потребляемая мощность	Вт	1163	1240
Ток	А	5,11	5,47
Макс. расход воздуха	м³/с (м³/час)	0,81 (2900)	0,84 (3010)
Частота вращения	мин ⁻¹	1370	1355
Макс. температура перемещаемого воздуха	°C	65	60
Макс. темп. перемещаемого воздуха при ре	гулировании °C	65	60
Уровень звукового давления на расстоянии	3 м дБ(А)	55	56
Bec	КГ	40,5	40,3
Класс изоляции двигателя		F	F
Класс защиты двигателя		IP 54	IP 54
Емкость конденсатора	мкФ	30	30
Тип термозащиты		STET 10B	STET 10B
Регулятор скорости, пятиступенчатый	Трансформатор	RTRE 7	RTRE 7
Регулятор 5-ст., высокая/низкая скорость	Трансформатор	REU 7 + STET 10B	REU 7 + STET 10B
Регулятор скорости, бесшаговый	Тиристор	-	-
Регулятор скорости, электронный		RET, REP, REPT 6	RET, REP, REPT 10
Схема подключения, стр. 12-15		6	6

Принадлежности

FK ctp. 503 SG ctp. 505

VK стр. 505


RSK ctp. 504

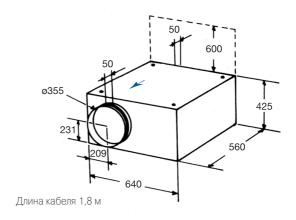

LDC стр. 494

494 FFR ctp. 494

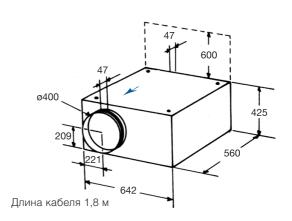
СВ стр. 496

KVO 355

	Октавные полосы частот, Гц										
	Гц	Общ	. 63	125	250	500	1k	2k	4k	8k	
L _{wA} к входу	дБ(А)	78	59	71	69	67	70	70	68	63	
L_{wA} к выходу	дБ(А)	83	67	73	72	74	78	76	74	68	
L_{wA} к окружению	дБ(А)	62	48	52	55	53	56	54	51	46	
c LDC 355-900											
L_{wA} к входу	дБ(А)	69	59	67	61	51	49	42	49	46	
L _{wA} к выходу	дБ(А)	73	67	69	64	58	57	48	55	51	


Условия испытаний: $q_v = 0.43 \text{ м}^3/\text{c}$, $P_s = 350 \text{ }\Pi\text{a}$

KVO 400


	Октавные полосы частот, Гц										
	Гц	Общ	. 63	125	250	500	1k	2k	4k	8k	
L _{wA} к входу	дБ(А)	79	60	72	70	67	73	73	70	65	
L_{wA} к выходу	дБ(А)	84	66	72	74	75	79	77	75	70	
L_{wA} к окружению	дБ(А)	63	41	53	60	53	58	53	50	44	
c LDC 400-900											
L_{wA} к входу	дБ(А)	69	60	67	62	56	50	54	53	50	
L _{wA} к выходу	дБ(А)	72	66	67	66	64	56	58	58	55	

Условия испытаний: $q_v = 0,46 \text{ м}^3/\text{c}$, $P_s = 363 \text{ }\Pi\text{a}$

KVO 355

KVO 400

Электрические принадлежности

Трансформатор Рестр. 478

Регулятор стр. 490

Реле термозащиты стр. 487